MCoil News

After a long and intensive phase of development and preparation, we are glad to introduce a variety of all-new Mundorf inductors.

New Wires...available immediately and suitable for diverse cores. OFC-Copper HeptaStrand self-bonding 7x0.45mm ≙ round-wire Ø 1.20mm · AWG17 OFC-Copper SolidCore self-bonding Ø 1.80mm · AWG13 OFC-Copper SolidCore round-wire Ø 2.36mm · AWG11

The new thinner HeptaStrand wire allows, amongst others, unique but compact air-coils for tweeters and cored-coils for mid-woofers with reasonable price/performance-ratio. MCoils from 1.80mm self-bonding wire are, at slightly increased RDC-values, the budget and space saving alternative to (vacuum-impregnated) 2.00mm wire coils. MCoils from 2.36mm wire ideally fill the gap between 1.80 and 3.00mm wire coils.

Update PipeCore Coils...with handy mounting hole.

FERRITE P-core F3023 M4 FERRITE P-core F4023 M4 ARONIT P-core A4530 M5

In 2016 we have introduced geometrically optimized, electrically identical ARONIT pipe-core coils with M5 hole as series $P \cdot BP$, superseding the rod-core series $A \cdot BA$. Almost at same time, we have replaced our pin-cores by electrically identical FERRITE pipe-cores with M4 hole for series $F \cdot BF$, too. Today we are happy to record and publish this neat improvement by merging all MCoil PipeCore into series $P \cdot BP$.

New DrumCore Coils...with excellent breakage resistance and surface finish.

FERRITE drum-core F2625 M5 FERRITE drum-core F3025 M5 FERRITE drum-core F3525 M5 FERRITE drum-core F4037 M5 ARONIT drum-core A5151 M6 · Highlight | Innovation of the Year

These superb drum-cores are already in use for some weeks now. The all-new, high-load core A5151 M6 replaces the core F5635 M4 (which is still used on costumer request) and allows higher inductances. For example H125 · BH125 up to 12mH instead of before 6.8, H140 · BH140 up to 6.8mH instead of 4.7 or H180 up to 2.2mH and LH45 up to 6.8mH. Thus this drum-core can also make you forget the obsolete very large ARONIT rod-cores.

Overview | Summary of new standard types

BL180	0.10 up to 0	0.18mH @ 5818	up to ().22mH	@ 5822	up to	0.39mH (@ 5828	up to ().82mH @ 7029	Э
	up to	1.2mH @ 7728	up to	2.7mH	@ 7059	up to	3.9mH (@ 106	up to	12mH @ 130	
L236 · VL236	0.10 up to 0	0.15mH @ 5828	up to (0.27mH	@ 7029	up to	0.39mH (<u>@</u> 7728	up to	1.0mH @ 7059	Э
	up to	1.5mH @ 106	up to	3.9mH	@ 130	up to	8.2mH (@ 150	up to	18mH @ 170	
LL45	0.10 up to 0	0.18mH @ 4020	up to (0.39mH	@ 5818	up to	0.56mH (@ 5822	up to	1.0mH @ 5828	3
	up to	2.0mH @ 7029	up to	3.0mH	@ 7728	up to	6.8mH (@ 7059			
BT180	1.0 up to	2.0mH @ T84	up to	4.7mH	@ T96	up to	15mH (@ T106	up to	47mH @ T130	2
T236 · VT236	1.0 up to	1.8mH @ T96	up to	5.6mH	@ T106	up to	18mH (@ T130	up to	33mH @ T150	2
BN180	2.2 up to	3.9mH @ N84	up to	12mH	@ N96	up to	33mH (@ N106			
N236 · VN236	1.0 up to	1.8mH @ N84	up to	4.7mH	@ N96	up to	12mH (@ N106	up to	33mH @ N13	0
BS180	1.0 up to	3.3mH @ S106	up to	8.2mH	@ S130	up to	47mH (@ S150			
H50	3.9 up to	8.2mH @ F2625	up to	27mH	@ F3025						
H71 · BH71	1.0 up to	3.3mH @ F2625	up to	5.6mH	@ F3025	up to	12mH (@ F3525	up to	27mH @ F403	37
H100 · BH100	1.0 up to	1.5mH @ F3025	up to	3.0mH	@ F3525	up to	6.8mH (@ F4037	up to	22mH @ A51	51
H125 · BH125	1.0 up to	1.2mH @ F3525	up to	4.7mH	@ F4037	up to	12mH (@ A5151			
H140 · BH140	1.0 up to	2.2mH @ F4037	up to	6.8mH	@ A5151						
H180	0.39 up to	2.2mH @ A5151									
LH45	1.0 up to	2.0mH @ F4037	up to	6.8mH	@ A5151						
P50	2.7 up to	22mH (formerly	F50 1.0	0 up to 2	10mH)						
P71 · BP71	0.68 up to	12mH (formerly	F71 ·	BF71	1.0 up to	94.7m	H and A7	1 · BA71	L 5.6ι	up to 12mH)	
P100 · BP100	0.27 up to	4.7mH (formerly	F100 ·	BF100	0.27 up to) 1.2m	H and A1	00 · BA10)0 2.2 ι	up to 4.7mH)	
P125 · BP125	1.2 up to	2.0mH (formerly	A125 ·	BA125	1.2 up to	o 1.8m	H)				_
P140 · BP140	0.47 up to	1.0mH (formerly	A140 ·	BA140	0.39 up to	0 1.0m	H)				